[When Speed → c]
In previous post we have seen how the mass increase for a moving charged object and calculated the value when it’s speed is very less compared to that of light.
https://www.parthasarathimishra.com/wordpress/index.php/2024/02/27/impact-on-mass-of-a-moving-charged-object/
Now we will take a much deeper and detailed analysis for a charged body on how it’s electric field distorts based on speed as first devised by J J Thomson.
The magnetic energy per unit volume of the system is given as:
\large K.E = \frac{\mu}{2}\left| H \right|^{2}\: \: \: \: \: \: \: \: \small------(1)The electrostatic energy per unit volume is given as:
\large P.E = \frac{\epsilon }{2}\left| E \right|^{2}\: \: \: \: \: \: \: \: \small------(2)Total energy of the system shall remain constant, hence:
\large P.E + K.E = ConstantTaking derivative with respect to E:
As, as kinetic energy is increasing, hence potential energy shall decrease. So the rate of change of potential energy shall be negative.
To find the derivative of v x E, lets write each vector in its component form and calculate the cross product.
We have:
This is the electric field intensity due to motional charge. Let’s call it E1 . Let’s E2 be the electric field in space due to the electric scalar potential Φ. Such that:
\large \overrightarrow{E_{2}}=-\overrightarrow{\nabla} \phiThe scalar potential can be zero in closed loop, but not in our case.
The total electric field intensity in space for the system is given as (E1 + E2):
\large \overrightarrow{E}=(\overrightarrow{B}\times \overrightarrow{v}) \:- \:\overrightarrow{\nabla} \phiNow lets say a charged object of surface charge Q and radius a moving with a velocity v in the direction of z-axis, for the sake of simplicity.

The velocity vector v becomes\large \overrightarrow{v}=v_{z} \hat{k}
Now\large \begin{align*}\overrightarrow{B}=\mu \overrightarrow{H}&= \mu(\overrightarrow{v} \times \overrightarrow{D}) \\ &= \mu[v_{z}\hat{k} \times (D_{x}\hat{i}+D_{y}\hat{j}+D_{z}\hat{k})] \\ &= \mu (-v_{z}D_{y}\hat{i}+v_{z}D_{x}\hat{j})\: \: \: \: \: \: \: \: \small------(3)\end{align*}
Now\small \begin{align*}\overrightarrow{B}=\mu \overrightarrow{H}&= \mu(\overrightarrow{v} \times \overrightarrow{D}) \\ \small &= \mu[v_{z}\hat{k} \times (D_{x}\hat{i}+D_{y}\hat{j}+D_{z}\hat{k})] \\ \small &= \mu (-v_{z}D_{y}\hat{i}+v_{z}D_{x}\hat{j})\: \: \: \: \: \: \: \: \small------(3)\end{align*}
Now the electric field intensity E becomes:
\large \begin{align*}\overrightarrow{E}&=(\overrightarrow{B}\times \overrightarrow{v}) \:- \:\overrightarrow{\nabla} \phi \\ &= [\mu (-v_{z}D_{y}\hat{i}+v_{z}D_{x}\hat{j}) \times v_{z}\hat{k}]\: - \: \overrightarrow{\nabla} \phi \\ &= \mu(v_{z}^{2}D_{x}\hat{i}+v_{z}^{2}D_{y}\hat{j})\:-\: \overrightarrow{\nabla} \phi\end{align*}Hence\large \begin{align*}\frac{\overrightarrow{D}}{\epsilon} &= \mu(v_{z}^{2}D_{x}\hat{i}+v_{z}^{2}D_{y}\hat{j})- \overrightarrow{\nabla} \phi\end{align*}
Or,\large \begin{align*}\overrightarrow{D} &= \mu \epsilon(v_{z}^{2}D_{x}\hat{i}+v_{z}^{2}D_{y}\hat{j})- \epsilon\overrightarrow{\nabla} \phi \\ &= \frac{v_{z}^{2}}{c^{2}}(D_{x}\hat{i}+D_{y}\hat{j})- \epsilon\overrightarrow{\nabla} \phi \:\:\:\:\:\small[\mu \epsilon =\frac{1}{c^{2}}] \end{align*}
Now,\large (D_{x}\hat{i}+D_{y}\hat{j}+D_{z}\hat{k}) = \frac{v_{z}^{2}}{c^{2}}(D_{x}\hat{i}+D_{y}\hat{j})- \epsilon\overrightarrow{\nabla} \phi \\ or,\:\large D_{x}(1-\frac{v_{z}^{2}}{c^{2}})\hat{i} + D_{y}(1-\frac{v_{z}^{2}}{c^{2}})\hat{j} + D_{z}\hat{k} = - \epsilon\overrightarrow{\nabla} \phi
Now,\small (D_{x}\hat{i}+D_{y}\hat{j}+D_{z}\hat{k}) = \frac{v_{z}^{2}}{c^{2}}(D_{x}\hat{i}+D_{y}\hat{j})- \epsilon\overrightarrow{\nabla} \phi \\ or,\:\small D_{x}(1-\frac{v_{z}^{2}}{c^{2}})\hat{i} + D_{y}(1-\frac{v_{z}^{2}}{c^{2}})\hat{j} + D_{z}\hat{k} = - \epsilon\overrightarrow{\nabla} \phi
Splitting the above equation for D into components we get:
Putting the vector components together we get:
Now taking divergent both sides:
As we are dealing with field in space, hence no charge is established there, so the divergence of D should be 0. Hence:
Now to solve this equation, we have to do coordinate transform of Z axis.
Lets put:
\large z'=\frac{c}{\sqrt{c^{2}-v_{z}^{2}}}zUsing chain rule:\large \frac{\partial\phi}{\partial z'} = \frac{\partial\phi}{\partial z}\frac{\partial z}{\partial z'} \\ \begin{align*}or,\:\large \frac{\partial^{2}\phi}{\partial z'^{2}} &= \frac{\partial\phi}{\partial z}\frac{\partial z}{\partial z'}\frac{\partial z}{\partial z'} \\ &= \frac{\partial^{2}\phi}{\partial z^{2}}(\frac{\partial z}{\partial z'})^{2} \\ &=(\frac{{c^{2}}-v_{z}^{2}}{c^{2}})\frac{\partial^{2}\phi}{\partial z^{2}}\end{align*}
Now eqn(7) becomes:\large \frac{\partial^{2} \phi }{\partial x^{2}}+\frac{\partial^{2} \phi }{\partial y^{2}}+\frac{\partial^{2} \phi }{\partial z'^{2}} = 0
Now this is Laplace equation for potential. Following is the standard solution for electric potential:
\begin{align*}\large \phi &= \large \frac{A}{\sqrt{x^{2}+y^{2}+z'^{2}}} \\ &= \large \frac{A}{\sqrt{x^{2}+y^{2}+(\frac{c^{2}}{c^{2}-v_{z}^{2}})z^{2}}}\end{align*}To find the constant A, we need to first find gradient of the scalar potential Φ and find the Displacement D, and then integrate the Displacement over entire surface of the sphere and equate with the net charge Q as per Gauss law.
The gradient of scalar potential, ∇.Φ is:
\large \frac{\partial \phi}{\partial x} = \frac{-Ax}{(x^{2}+y^{2}+(\frac{c^{2}}{c^{2}-v_{z}^{2}})z^{2})^{\frac{3}{2}}} \large \frac{\partial \phi}{\partial y} = \frac{-Ay}{(x^{2}+y^{2}+(\frac{c^{2}}{c^{2}-v_{z}^{2}})z^{2})^{\frac{3}{2}}} \large \frac{\partial \phi}{\partial z} = \frac{c^{2}}{(c^{2}-v_{z}^{2})}\frac{-Az}{(x^{2}+y^{2}+(\frac{c^{2}}{c^{2}-v_{z}^{2}})z^{2})^{\frac{3}{2}}}Now putting the value of components of gradient of potential in eqn(4), (5) and (6), we get:
Now according to Gauss law of electrostatics, the total electric displacement across a surface of a charged object is always the amount of charge contained.
\large \oiint \overrightarrow{D}.\hat{n}\:dS = Q\: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \:\small---(11)The normal unit vector n for the sphere with radius a is defined as:
\large \hat{n} = \frac{x}{a}\hat{i}+\frac{y}{a}\hat{j}+\frac{z}{a}\hat{k}Now integral (11) becomes:
Now for proper evaluation, we need to convert this to spherical coordinate.So we have:\large x = rcos\phi sin\theta \\ \large y = rsin\phi sin\theta \\ \large z = rcos\theta \\ \large dS = r^{2}sin\theta d\theta d\phi
The variable r should be set to radius a as we are not integrating over volume.
So now putting the above expression into the integral we get:
Now we solve this integral by substituting:\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}cos\theta = tan\psi \\ Hence,\: \frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}sin\theta\: \partial\theta = sec^{2}\psi \: \partial \psi
Now the above integral becomes:\begin{align*} Q &= \large \frac{2 \pi\epsilon A c^{2}}{(c^{2}-v^{2}_{z})}\int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}\frac{-\sqrt{c^{2}-v_{z}^{2}}}{v_{z}} \frac{sec^{2}\psi}{(1+tan^{2}\psi)^{\frac{3}{2}}} \: \partial \psi \\ &= \large \frac{-2 \pi\epsilon A c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}cos \psi \: \partial \psi \\ &= \large \frac{-2 \pi\epsilon A c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\left[ sin \psi \right]^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \\ &= \large \frac{-2 \pi\epsilon A c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\left[ \frac{tan \psi}{\sqrt{1+tan^{2}\psi}} \right]^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \\ &= \large \frac{-2 \pi\epsilon A c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\frac{\frac{-2v_{z}}{\sqrt{c^2-v_{z}^{2}}}}{\sqrt{1+\frac{v_{z}^{2}}{c^{2}-v_{z}^{2}}}} \\ &= \large \frac{4 \pi \epsilon Ac}{\sqrt{c^2-v^2_{z}}} \end{align*}
Now the above integral becomes:\begin{align*} Q &= \small \frac{2 \pi\epsilon A c^{2}}{(c^{2}-v^{2}_{z})}\int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}\frac{-\sqrt{c^{2}-v_{z}^{2}}}{v_{z}} \tiny \frac{sec^{2}\psi}{(1+tan^{2}\psi)^{\frac{3}{2}}} \: \small \partial \psi \\ &= \small \frac{-2 \pi\epsilon A c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}cos \psi \: \partial \psi \\ &= \small \frac{-2 \pi\epsilon A c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\left[ sin \psi \right]^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \\ &= \small \frac{-2 \pi\epsilon A c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\left[ \frac{tan \psi}{\sqrt{1+tan^{2}\psi}} \right]^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \\ &= \small \frac{-2 \pi\epsilon A c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\frac{\frac{-2v_{z}}{\sqrt{c^2-v_{z}^{2}}}}{\sqrt{1+\frac{v_{z}^{2}}{c^{2}-v_{z}^{2}}}} \\ &= \small \frac{4 \pi \epsilon Ac}{\sqrt{c^2-v^2_{z}}} \end{align*}
Now A becomes:\large A = \frac{Q}{4 \pi \epsilon}\frac{\sqrt{c^2-v^2_{z}}}{c}
Now putting the value of A in scalar potential equation it becomes:\begin{align*}\large \phi &= \large \frac{Q \sqrt{1 - \frac{v_{z}^{2}}{c^{2}}}}{4 \pi \epsilon \sqrt{x^{2}+y^{2}+\left(\frac{1}{1-\frac{v_{z}^{2}}{c^{2}}}\right)z^{2}}}\end{align*}\: \: \: \: \: \: \: \:\small---(12)
Now putting the value of A in scalar potential equation it becomes:\begin{align*}\large \phi &= \large \frac{Q \sqrt{1 - \frac{v_{z}^{2}}{c^{2}}}}{4 \pi \epsilon \sqrt{x^{2}+y^{2}+\left(\frac{1}{1-\frac{v_{z}^{2}}{c^{2}}}\right)z^{2}}}\end{align*}\: \: \: \:\small---(12)
You can see when the speed approaches speed of light the factor vz/c becomes prevalent and the potential becomes undefined at that speed.
The potential can be expressed in spherical coordinate as:
\begin{align*}\large \phi &= \large \frac{Q \sqrt{1 - \frac{v_{z}^{2}}{c^{2}}}}{4 \pi \epsilon r\sqrt{sin^{2}\theta + \left(\frac{1}{1-\frac{v_{z}^{2}}{c^{2}}} \right)cos^{2}\theta}}\end{align*}Now putting the value of A in eqn(8), (9), (10) we get D as:
In spherical coordinate, the D can be expressed as:\small \overrightarrow{D}=\frac{Q}{4 \pi}\frac{1}{\sqrt{1-\frac{v_{z}^{2}}{c^{2}}}}\frac{1}{ r^{2}(sin^{2}\theta+\frac{1}{1-\frac{v_{z}^2}{c^2}}cos^{2}\theta)^{\frac{3}{2}}} (cos\phi sin \theta\hat{r}+sin \phi sin \theta\hat{\theta}+cos \theta\hat{\phi})
In spherical coordinate, the D can be expressed as:\begin{align*} \small \overrightarrow{D} &= \small \frac{Q}{4 \pi}\frac{1}{\sqrt{1-\frac{v_{z}^{2}}{c^{2}}}}\frac{1}{ r^{2}(sin^{2}\theta+\frac{1}{1-\frac{v_{z}^2}{c^2}}cos^{2}\theta)^{\frac{3}{2}}} \\ &\: \: \: \: \: \: \: \: \small (cos\phi sin \theta\hat{r}+sin \phi sin \theta\hat{\theta}+cos \theta\hat{\phi})\end{align*}
The above equation shows that the the faraday tubes are radial and the resultant polarization D varies inversely as\large D \propto \frac{1}{r^{2}(sin^{2}\theta+\frac{1}{1-\frac{v_{z}^2}{c^2}}cos^{2}\theta)^{\frac{3}{2}}}
To plot the potential and displacement, we can convert eqn(12) of potential into two dimensional equation for the sake of simplicity in visualization. We can replace z as x as we can visualize moving in x direction and remove the actual x part. Also the equation is with respect to moving frame. To get the proper field picture, we can transform the x-axis into the stationary from using x → x – vt. Then we can ploy y as:
Following are the plot of potential (in gray) and displacement (in blue) for the the charged object when the v =0 and when v = 0.8c.

You can clearly see when the speed approach that of light, the field starts to distort as they don’t get enough time to realign, hence compressing the aether. Following is a short visualization with animation.

The magnetic field intensity H can be now derived from D using eqn(3), as:\large \overrightarrow{H}=\frac{Q}{4 \pi}\frac{1}{\sqrt{1-\frac{v_{z}^{2}}{c^{2}}}}\frac{v_{z}}{ (x^{2}+y^{2}+\frac{1}{1-\frac{v_{z}^2}{c^2}}z^{2})^{\frac{3}{2}}}(-y\hat{i}+x\hat{j})
The magnetic field intensity H can be now derived from D using eqn(3), as:\small \overrightarrow{H}=\frac{Q}{4 \pi}\frac{1}{\sqrt{1-\frac{v_{z}^{2}}{c^{2}}}}\frac{v_{z}}{ (x^{2}+y^{2}+\frac{1}{1-\frac{v_{z}^2}{c^2}}z^{2})^{\frac{3}{2}}}(-y\hat{i}+x\hat{j})
The magnetic energy per unit volume is given from eqn(1) as \large \frac{\mu}{2}\left| H \right|^{2}=\frac{\mu Q^2}{32 \pi^{2}}\frac{1}{(1-\frac{v_{z}^{2}}{c^{2}})}\frac{v_{z}^{2}(x^2+y^{2})}{ (x^{2}+y^{2}+\frac{1}{1-\frac{v_{z}^2}{c^2}}z^{2})^{3}}
The magnetic energy per unit volume is given from eqn(1) as \small \frac{\mu}{2}\left| H \right|^{2}=\frac{\mu Q^2}{32 \pi^{2}}\frac{1}{(1-\frac{v_{z}^{2}}{c^{2}})}\frac{v_{z}^{2}(x^2+y^{2})}{ (x^{2}+y^{2}+\frac{1}{1-\frac{v_{z}^2}{c^2}}z^{2})^{3}}
Converting the kinetic energy per unit volume into spherical coordinate we get:\large \frac{\mu Q^2}{32 \pi^{2}}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})}\frac{sin^2\theta}{ r^{4}(sin^{2}\theta+\frac{1}{1-\frac{v_{z}^2}{c^2}}cos^{2}\theta)^{3}}
To calculate the total kinetic energy we need to integrate the above expression for the entire space after the sphere surface.\begin{align*}\large K.E &= \large\frac{\mu Q^2}{32 \pi^{2}}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})}\int_{0}^{2 \pi }\int_{0}^{\pi}\int_{a}^{\infty }\frac{sin^2\theta}{ r^{4}(sin^{2}\theta+\frac{1}{1-\frac{v_{z}^2}{c^2}}cos^{2}\theta)^{3}} r^{2}sin\theta \partial \theta \partial \phi \\ &= \large\frac{\mu Q^2}{16 \pi}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})}\int_{0}^{\pi}\int_{a}^{\infty }\frac{sin^3\theta}{ r^{2}(sin^{2}\theta+\frac{1}{1-\frac{v_{z}^2}{c^2}}cos^{2}\theta)^{3}} \partial \theta \\ &= \large\frac{\mu Q^2}{16 \pi a}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})}\int_{0}^{\pi}\frac{sin^3\theta}{ (sin^{2}\theta+\frac{1}{1-\frac{v_{z}^2}{c^2}}cos^{2}\theta)^{3}} \partial \theta \\ &= \large\frac{\mu Q^2}{16 \pi a}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})}\int_{0}^{\pi}\frac{sin^3\theta}{ (1+\frac{v_{z}^2}{c^{2}-v_{z}^{2}}cos^{2}\theta)^{3}} \partial \theta \end{align*}
To calculate the total kinetic energy we need to integrate the above expression for the entire space after the sphere surface.\begin{align*}\small K.E &= \tiny \frac{\mu Q^2}{32 \pi^{2}}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})} \small \int_{0}^{2 \pi }\int_{0}^{\pi}\int_{a}^{\infty }\tiny \frac{sin^2\theta}{ r^{4}(sin^{2}\theta+\frac{1}{1-\frac{v_{z}^2}{c^2}}cos^{2}\theta)^{3}} r^{2}sin\theta \partial \theta \partial \phi \\ &= \small \frac{\mu Q^2}{16 \pi}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})}\int_{0}^{\pi}\int_{a}^{\infty }\tiny \frac{sin^3\theta}{ r^{2}(sin^{2}\theta+\frac{1}{1-\frac{v_{z}^2}{c^2}}cos^{2}\theta)^{3}} \small \partial \theta \\ &= \small \frac{\mu Q^2}{16 \pi a}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})}\int_{0}^{\pi}\frac{sin^3\theta}{ (sin^{2}\theta+\frac{1}{1-\frac{v_{z}^2}{c^2}}cos^{2}\theta)^{3}} \partial \theta \\ &= \small \frac{\mu Q^2}{16 \pi a}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})}\int_{0}^{\pi}\frac{sin^3\theta}{ (1+\frac{v_{z}^2}{c^{2}-v_{z}^{2}}cos^{2}\theta)^{3}} \partial \theta \end{align*}
To solve the above integral, let’s set:cos\theta = u \\ Hence,\: sin\theta\: \partial\theta = - \partial u
Now the integral becomes:\begin{align*}\large K.E &=\large\frac{\mu Q^2}{16 \pi a}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})}\int_{1}^{-1}\frac{u^{2} - 1}{ (1+\frac{v_{z}^2}{c^{2}-v_{z}^{2}}u^{2})^{3}} \partial u \end{align*}
Now the integral becomes:\begin{align*}\small K.E &=\small \frac{\mu Q^2}{16 \pi a}\frac{v_{z}^{2}}{(1-\frac{v_{z}^{2}}{c^{2}})}\int_{1}^{-1}\frac{u^{2} - 1}{ (1+\frac{v_{z}^2}{c^{2}-v_{z}^{2}}u^{2})^{3}} \partial u \end{align*}
Now again set:\begin{align*}\large \frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}u = tan \psi \\ so, \partial u = \frac{\sqrt{c^{2}-v_{z}^{2}}}{v_{z}}sec^{2}\psi \partial \psi \end{align*}
Now the integral reduced to:\begin{align*}\large K.E &=\small\frac{\mu Q^2}{16 \pi a}\frac{1}{(1-\frac{v_{z}^{2}}{c^{2}})}\frac{\sqrt{c^{2}-v_{z}^{2}}}{v_{z}}\int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} ((c^{2}-v_{z}^{2})sin^{2}\psi cos^{2}\psi - v_{z}^{2}cos^{4}\psi) \partial \psi \\ &= \small\frac{\mu Q^2}{16 \pi a}\frac{1}{(1-\frac{v_{z}^{2}}{c^{2}})}\frac{\sqrt{c^{2}-v_{z}^{2}}}{v_{z}}\int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} (c^{2}sin^{2}\psi cos^{2}\psi - v_{z}^{2}cos^{2}\psi) \partial \psi \\ &= \small\frac{\mu Q^2}{16 \pi a}\frac{v_{z}c^{2}}{\sqrt{c^{2}-v_{z}^{2}}}\int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} (\frac{c^{2}}{v_{z}^{2}}sin^{2}\psi cos^{2}\psi - cos^{2}\psi) \partial \psi \\ &= \small\frac{\mu Q^2}{16 \pi a}\frac{v_{z}c^{2}}{\sqrt{c^{2}-v_{z}^{2}}}\int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} (\frac{c^{2}}{v_{z}^{2}}\frac{1}{8}(1 - cos4 \psi) - \frac{1}{2}(1 + cos 2 \psi)) \partial \psi \\ &= \small\frac{\mu Q^2}{16 \pi a}\frac{v_{z}c^{2}}{\sqrt{c^{2}-v_{z}^{2}}} \left[ \frac{c^{2}}{v_{z}^{2}}\frac{1}{8}(\psi - \frac{sin 4 \psi}{4}) - \frac{1}{2}(\psi + \frac{sin 2\psi}{2}) \right]^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \\ &= \small\frac{\mu Q^2}{16 \pi a}\frac{v_{z}c^{2}}{\sqrt{c^{2}-v_{z}^{2}}} \left[ \frac{c^{2}}{8v_{z}^{2}}\psi - \frac{c^{2}}{8v_{z}^{2}}\frac{sin 4\psi}{4} - \frac{\psi}{2} -\frac{sin 2 \psi}{4}\right]^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \end{align*}
Now the integral reduced to:\begin{align*}\large K.E &=\tiny \frac{\mu Q^2}{16 \pi a}\frac{1}{(1-\frac{v_{z}^{2}}{c^{2}})}\frac{\sqrt{c^{2}-v_{z}^{2}}}{v_{z}}\small \int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}\tiny ((c^{2}-v_{z}^{2})sin^{2}\psi cos^{2}\psi \\ & \:\:\:\:\:\:\:\:\:\: \tiny - v_{z}^{2}cos^{4}\psi) \partial \psi \\ &= \tiny \frac{\mu Q^2}{16 \pi a}\frac{1}{(1-\frac{v_{z}^{2}}{c^{2}})}\frac{\sqrt{c^{2}-v_{z}^{2}}}{v_{z}}\small \int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \tiny (c^{2}sin^{2}\psi cos^{2}\psi \\ & \:\:\:\:\:\:\:\:\:\: \tiny - v_{z}^{2}cos^{2}\psi) \partial \psi \\ &= \tiny \frac{\mu Q^2}{16 \pi a}\frac{v_{z}c^{2}}{\sqrt{c^{2}-v_{z}^{2}}}\small \int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \tiny (\frac{c^{2}}{v_{z}^{2}}sin^{2}\psi cos^{2}\psi - cos^{2}\psi) \partial \psi \\ &= \tiny \frac{\mu Q^2}{16 \pi a}\frac{v_{z}c^{2}}{\sqrt{c^{2}-v_{z}^{2}}}\small \int_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \tiny(\frac{c^{2}}{v_{z}^{2}}\frac{1}{8}(1 - cos4 \psi) \\ & \:\:\:\:\:\:\:\:\:\: \tiny - \frac{1}{2}(1 + cos 2 \psi)) \partial \psi \\ &= \tiny \frac{\mu Q^2}{16 \pi a}\frac{v_{z}c^{2}}{\sqrt{c^{2}-v_{z}^{2}}} \left[ \frac{c^{2}}{v_{z}^{2}}\frac{1}{8}(\psi - \frac{sin 4 \psi}{4}) - \frac{1}{2}(\psi + \frac{sin 2\psi}{2}) \right]^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \\ &= \tiny \frac{\mu Q^2}{16 \pi a}\frac{v_{z}c^{2}}{\sqrt{c^{2}-v_{z}^{2}}} \left[ \frac{c^{2}}{8v_{z}^{2}}\psi - \frac{c^{2}}{8v_{z}^{2}}\frac{sin 4\psi}{4} - \frac{\psi}{2} -\frac{sin 2 \psi}{4}\right]^{tan^{-1}\frac{-v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}}_{tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}}} \end{align*}
By substituting:\large tan^{-1}\frac{v_{z}}{\sqrt{c^{2}-v_{z}^{2}}} = v_{2}the above equation reduced to:
So now the total kinetic energy of the system is the sum of mechanical and magnetic energy, which is:\large K.E = \large K.E_{M} + K.E_{E} \\ \begin{align*}\large \frac{1}{2}Mv_{z}^{2} &= \small \frac{1}{2}mv_{z}^{2} + \frac{\mu Q^2}{16 \pi a}\frac{v_{z}c^{2}}{\sqrt{c^{2}-v_{z}^{2}}}\left\{v_{2}(1 - \frac{c^{2}}{4v_{z}^{2}}) + \frac{1}{2}sin 2v_{2}(1+\frac{c^2}{4v_{z}^{2}}cos2v_{2})\right\} \\ &= \small \frac{1}{2}v_{z}^{2}\left[ m + \frac{\mu Q^2}{8 \pi a}\frac{c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\left\{v_{2}(1 - \frac{c^{2}}{4v_{z}^{2}}) + \frac{1}{2}sin 2v_{2}(1+\frac{c^2}{4v_{z}^{2}}cos2v_{2})\right\}\right] \end{align*} \\ or, \large M = m + \small \frac{\mu Q^2}{8 \pi a}\frac{c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\left\{v_{2}(1 - \frac{c^{2}}{4v_{z}^{2}}) + \frac{1}{2}sin 2v_{2}(1+\frac{c^2}{4v_{z}^{2}}cos2v_{2})\right\}
So now the total kinetic energy of the system is the sum of mechanical and magnetic energy, which is:\large K.E = \large K.E_{M} + K.E_{E} \\ \begin{align*}\small \frac{1}{2}Mv_{z}^{2} &= \small \frac{1}{2}mv_{z}^{2} + \frac{\mu Q^2}{16 \pi a}\frac{v_{z}c^{2}}{\sqrt{c^{2}-v_{z}^{2}}} \\ & \small \left\{v_{2}(1 - \frac{c^{2}}{4v_{z}^{2}}) + \frac{1}{2}sin 2v_{2}(1+\frac{c^2}{4v_{z}^{2}}cos2v_{2})\right\} \\ &= \small \frac{1}{2}v_{z}^{2}\large [ \small m + \frac{\mu Q^2}{8 \pi a}\frac{c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}} \\ & \small \left\{v_{2}(1 - \frac{c^{2}}{4v_{z}^{2}}) + \frac{1}{2}sin 2v_{2}(1+\frac{c^2}{4v_{z}^{2}}cos2v_{2})\right\} \large ] \end{align*} \\ \begin{align*}or,\:\:\: \small M &= m + \small \frac{\mu Q^2}{8 \pi a}\frac{c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}} \\ & \small \left\{v_{2}(1 - \frac{c^{2}}{4v_{z}^{2}}) + \frac{1}{2}sin 2v_{2}(1+\frac{c^2}{4v_{z}^{2}}cos2v_{2})\right\}\end{align*}
So the mass of the object is increased by amount:\small \frac{\mu Q^2}{8 \pi a}\frac{c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\left\{v_{2}(1 - \frac{c^{2}}{4v_{z}^{2}}) + \frac{1}{2}sin 2v_{2}(1+\frac{c^2}{4v_{z}^{2}}cos2v_{2})\right\}
So the mass of the object is increased by amount:\begin{align*} & \small \frac{\mu Q^2}{8 \pi a}\frac{c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}} \\ & \large [ \small v_{2}(1 - \frac{c^{2}}{4v_{z}^{2}}) + \frac{1}{2}sin 2v_{2}(1+\frac{c^2}{4v_{z}^{2}}cos2v_{2}) \large ]\end{align*}
By evaluating the above extra mass quantity by converting factors sin2v2 and cos2v2 in terms of tan and evaluate it using the value of v2, we get:
You can see if velocity approaches to that of speed of light (vz = c), the mass tends to increase to infinity. So it’s velocity will remain constant. So its impossible to increase the velocity of a charged boy more than that of the speed of light in this scenario.
So the increased mass quantity becomes\small \frac{\mu Q^2}{8 \pi a}\frac{c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}}\left [\left\{\frac{v_{z}}{c} - \frac{v_{z}^{3}}{3c^{3}}\left( 1 +\frac{v_{z}^{2}}{6c^{2}} \right) \right\}\left(\frac{4v_{z}^{2} -c^{2}}{4v_{z}^{2}}\right) + \frac{(2v_{z}^{2}+c^{2})}{4v_{z}c^{2}}\sqrt{c^{2}-v_{z}^{2}}\right ] \\ \begin{align*} &= \small \frac{\mu Q^2}{8 \pi a}\frac{1}{4v_{z}^{2}\sqrt{1-\frac{v_{z}^{2}}{c^{2}}}}\left[(1 -\frac{v_{z}^{2}}{3c^{2}}-\frac{v_{z}^{4}}{18c^{4}})(4v_{z}^{2}-c^{2}) +(2v_{z}^{2}+c^{2})\sqrt{1-\frac{v_{z}^{2}}{c^{2}}} \right] \\ & \simeq \small \frac{\mu Q^2}{8 \pi a}\frac{1}{4v_{z}^{2}}\left[ 4v_{z}^{2} -\frac{4v_{z}^{4}}{3c^{2}}-\frac{2v_{z}^{6}}{9c^{4}}-c^{2} + \frac{v_{z}^{2}}{3}+\frac{v_{z}^{4}}{18c^{2}} + 2v_{z}^{2} + c^{2} \right] \: \: \: \tiny \text{[By dropping the negligible factor }\sqrt{1-\frac{v_{z}^{2}}{c^{2}}} \text{ ]} \\ &= \frac{\mu}{2 \pi}\frac{Q^{2}}{a}\frac{1}{16}\left[ \frac{19}{3} -\frac{69v_{z}^{2}}{54c^{2}} - \frac{2v_{z}^{4}}{9c^{4}} \right] \\ & \simeq \frac{\mu}{2 \pi}\frac{Q^{2}}{3a}\frac{19}{16} \tiny \:\:\:\:\:\:\:\:\:\:\:\: \text{[Dropping the negligible last two terms]} \\ & \simeq \frac{\mu}{2 \pi}\frac{Q^{2}}{3a}\tiny \:\:\:\:\:\:\:\:\:\:\:\: \text{[As the factor } \frac{19}{16} = 1.18 \text{ is small and will be getting smaller if more terms of approximation is used. So dropped]} \end{align*}
So the increased mass quantity becomes\begin{align*} & \small \frac{\mu Q^2}{8 \pi a}\frac{c^{2}}{v_{z}\sqrt{c^{2}-v_{z}^{2}}} \large[ \\ & \:\:\:\:\:\:\: \small \left\{\frac{v_{z}}{c} - \frac{v_{z}^{3}}{3c^{3}}\left( 1 +\frac{v_{z}^{2}}{6c^{2}} \right) \right\}\left(\frac{4v_{z}^{2} -c^{2}}{4v_{z}^{2}}\right) \\ & \:\:\:\:\:\:\: \small + \frac{(2v_{z}^{2}+c^{2})}{4v_{z}c^{2}}\sqrt{c^{2}-v_{z}^{2}} \large \: ] \\ &= \small \frac{\mu Q^2}{8 \pi a}\frac{1}{4v_{z}^{2}\sqrt{1-\frac{v_{z}^{2}}{c^{2}}}}\large [ \small (1 -\frac{v_{z}^{2}}{3c^{2}}-\frac{v_{z}^{4}}{18c^{4}})(4v_{z}^{2}-c^{2}) \\ & \:\:\:\:\:\:\: \small +(2v_{z}^{2}+c^{2})\sqrt{1-\frac{v_{z}^{2}}{c^{2}}} \large \: ] \\ & \simeq \small \frac{\mu Q^2}{8 \pi a}\frac{1}{4v_{z}^{2}}\large [ \small 4v_{z}^{2} -\frac{4v_{z}^{4}}{3c^{2}}-\frac{2v_{z}^{6}}{9c^{4}}-c^{2} + \frac{v_{z}^{2}}{3} \\ & \small \:\:\:\:\:\:\: +\frac{v_{z}^{4}}{18c^{2}} + 2v_{z}^{2} + c^{2} \large \: ] \: \: \: \tiny \text{[By dropping the negligible factor }\sqrt{1-\frac{v_{z}^{2}}{c^{2}}} \text{ ]} \\ &= \frac{\mu}{2 \pi}\frac{Q^{2}}{a}\frac{1}{16}\left[ \frac{19}{3} -\frac{69v_{z}^{2}}{54c^{2}} - \frac{2v_{z}^{4}}{9c^{4}} \right] \\ & \simeq \frac{\mu}{2 \pi}\frac{Q^{2}}{3a}\frac{19}{16} \tiny \:\:\:\:\:\:\:\: \text{[Dropping the negligible last two terms]} \\ & \simeq \frac{\mu}{2 \pi}\frac{Q^{2}}{3a} \:\:\:\: \tiny \text{[As the factor } \frac{19}{16} = 1.18 \text{ is small and will be getting smaller } \\ & \:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\: \tiny \text{if more terms of approximation is used. So dropped]} \end{align*}
This is the same factor which we obtained in our pervious analysis without considering any field distortion.
So does this prove that speed of light is the maximum limit to any charged bodies? And what about neutral bodies?
Will write about it in future post.